



### MULTIDIMENSIONAL INTEGRATED QUANTITATIVE APPROACH TO ASSESS SAFETY AND SUSTAINABILITY OF NANOMATERIALS IN REAL CASE LIFE CYCLE SCENARIOS USING NANOSPECIFIC IMPACT CATEGORIES

# WP2

**Experimental Data Generation: NMs provision and characterisation M-Measure (I)** 

## 12M Annual General Meeting

Turin - Italy 29-30 January 2025

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA No 101138414



# Tasks

| Task 2.1 | Synthesis and Provision of the NM groups for targeted applications<br>Leader: <u>CENTI (Lorena Coelho)</u> ; Partners: UNITO, CNR, BIU, AITEX                                   | M3-M24  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Task 2.2 | Data mining: collecting info available on INTEGRANO target materials<br>Leader: <u>CNR (Anna &amp; Ilaria)</u> ; Partners: UNITO, CENTI, BIU, AITEX                             | M1-M18  |
| Task 2.3 | NMs Characterisation program for selected NMs: size, morphology, p-chem properties<br>Leader: <u>CNR (Anna &amp; Ilaria)</u> ; Partners: UNITO, CENTI, BIU, AITEX               | M7-M36  |
| Task 2.4 | Characterisation and Detection of NMs and NEPs in real-case LC scenarios<br>Leader: CNR-ISAC (Alessia Nicosia); Partners: PRJ, CENTI, UNITO, ARCHE, B4C, UniMIB, RoV, DRT, VERL | M13-M42 |
| Task 2.5 | Determination of safe condition of Use (CoU) and Risk Assessment (RA)<br>Leader. <u>ARCHE (Joonas Koivisto)</u> ; Partners: CNR, UniMIB, JRC                                    | M19-M42 |







# Gantt

| WP2  |                                                                                    | Year 1 |   |   | Year 2 |   |   | Year 3 |   |   | Year 4 |   |   |   |   |   |   |   |
|------|------------------------------------------------------------------------------------|--------|---|---|--------|---|---|--------|---|---|--------|---|---|---|---|---|---|---|
| Task | Title                                                                              | Leader | 1 | 2 | 3      | 4 | 1 | 2      | 3 | 4 | 1      | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 2.1  | Synthesis and Provision of the NM groups for targeted applications                 | CENTI  |   |   |        |   |   |        |   |   |        |   |   |   |   |   |   |   |
| 2.2  | Addressing case studies specific goal and scope                                    | CNR    |   |   |        |   |   |        |   |   |        |   |   |   |   |   |   |   |
| 2.3  | NMs Characterisation program for selected NMs: size, morphology, p-chem properties | CNR    |   |   |        |   |   |        |   |   |        |   |   |   |   |   |   |   |
| 2.4  | Characterisation and Detection of NMs and NEPs in real-case LC scenarios           | CNR    |   |   |        |   |   |        |   |   |        |   |   |   |   |   |   |   |
| 2.5  | Determination of safe condition of Use (CoU) and Risk Assessment (RA)              | ARCHE  |   |   |        |   |   |        |   |   |        |   |   |   |   |   |   |   |







# Deliverables

| Del. | Title                                                                                       | Lead Beneficiary        | Diss. Level | Due<br>Month | Date          |
|------|---------------------------------------------------------------------------------------------|-------------------------|-------------|--------------|---------------|
| D2.1 | Set of NMs samples                                                                          | CENTI (Lorena Coelho)   | PU          | 24           | December 2025 |
| D2.2 | INTEGRANO integrated database (DB) periodic release                                         | CENTI (Lorena Coelho)   | PU          | 36           | December 2026 |
| D2.3 | DB on NMs detection campaigns in real and simulated environment for Fate Factors assessment | CNR (Alessia Nicosia)   | PU          | 42           | June 2027     |
| D2.4 | Report on Conditions of Safe Use                                                            | ARCHE (Joonas Koivisto) | PU          | 42           | June 2027     |







### **Overview of the NMs and NEPs targeted**

- Task 2.1 Synthesis and Provision of the NM groups for targeted applications
- Task 2.2 Data mining: collecting info available on INTEGRANO target materials
- Task 2.3 NMs Characterisation program for selected NMs: size, morphology, p-chem properties







### **Overview of the NMs and NEPs targeted**



### CS 1.1

- AgHEC and AgCUR already optimized in previous projects;
- Coating on polyester 100% PES with 145 g/m<sup>2</sup>, supplied by AITEX, with 3 concentrations (0.1, 0.05 and 0.01 wt.%)
- Higher concentration of Ag for AgHEC compare with AgCUR:
  - Necessary assess the Ag amount after 1 and 5 WC to verify the lowest Ag concentration ensuring a homogeneous stable coating.

#### **Optimization goal:**

- 1 KDF: Agnanosol concentration
- 3 KPIs: Ag loading, adhesion (washing fastness) and antibacterial





### **Overview of the NMs and NEPs targeted**



#### CS 4.2

- Two CA nanofiber membranes were produced by electrospun with around 550 nm and 0,34 and 4,15 g/m2;
- Comparing to a commercial FFP3, both membranes exhibit an exceptionally high-quality factor, indicating that the CA is a promising air filter that effectively removes particles while ensuring good breathability;
- Ag-HEC incorporation on CA nanofiber and characterization are ongoing.







### **Overview of the NMs and NEPs targeted**



- CNR-ISSMC optimized the NF in previous project with SiO2 by spray-drying and Stöber methods;
- Is under optimization the study with bio-SiO2 by spray-drying and the material is under characterization:
  - TGA for EO quantification;
  - Antibacterial activity

### **Optimization goal:**

- 1 KDF: active ingredient composition EO in water (later EO/water ratio) and SiO2:EO ratio
- 3 KPIs: adsorption (loading) and desorption (release) and antibacterial activity.







### **Overview of the NMs and NEPs targeted**



- Synthesis and incorporation on the same step;
- The coated textiles showed homogenous and dense coatings of metal oxides;
- ZnO-coated textiles with E. coli and S. aureus bacteria resulted in a more than 4-log reduction in planktonic and biofilm bacterial growth mode;
- CuO-coated textiles completely inhibited the growth of *S. aureus* biofilm bacteria and significantly reduced (5-log) the planktonic growth.

### **Optimization goal:**

- 32 samples (CuO + cotton/polyester-cotton, ZnO + cotton/polyester-cotton) will be prepared following a DoE matrix for subsequent leaching investigations
- KDF1: precursor concentration
- KDF2: reaction time



### **Overview of the NMs and NEPs targeted**



- Fluorescent C-dots were synthesized using Olive, Rosemary, Thyme, and Salvia Leaves as precursors;
- The properties of synthesized C-dots were characterized by TEM (size in the range of 3-5 nm), and FL (~450 nm, the color of synthesized CDs' aqueous solution under daylight is yellow and blue under UV light), and antibacterial activity.
- Olive and Rosemary C-dots with MIC against *S. aureus* of **0,625 mg/ml** were chosen for further coating.

#### Optimization goal of the coating procedure with two KDFs:

- KDF1: precursor concentration
- KDF2: reaction time







### **Overview of the NMs and NEPs targeted**



- So far, from the 6 samples produced and characterized, there was no significant difference:
  - The sedimentation is very fast (diameter around 10 μm), which will limit its application in NEPs by some of technologies (spray coating);
  - Compound **I2B and I3A** showed the best performance in **inhibiting the growth of** *E. coli* (5 and 10 mg/mL), but none of the compounds showed bactericidal activity at the concentration evaluated. Against *S. aureus*, all compounds were ineffective;
- CNR-ISSMC is studying the size reduction by ball milling may affect luminescence effect
- According to the results, consider other options for exfoliation: hydrothermal, ultrasound or microwave process
- It was not observed sufficient performance to validate its effectiveness as an air filtering device will not be used in CS4
- Bio-SiO2 already sent for testing.







### **Overview of the NMs and NEPs targeted**



#### **Optimization goal - exfoliation:**

- 2 KDF: time and milling
- 3 KPIs: luminescence

#### **Optimization goal – dip-coating:**

- 1 KDF: EB concentration
- 4 KPI: EB loading, washing fastness, luminescence, antibacterial properties.







### **Overview of the NMs and NEPs targeted**



### CS 1.1

- Spray coating at CeNTI: for low amount applied with stand alone unit, later upscale with the pilot plant (not fully yet installed);
- Finalise KDFs for incorporation step

### CS 2

- Spray coating at CeNTI (waiting for the membranes to be sent by B4C)
- Sonochemical coating at BIU







#### SEM

a)

200 nm

b)

200 nm

| c                                       |                                   |                      |                                  |              |                                  |
|-----------------------------------------|-----------------------------------|----------------------|----------------------------------|--------------|----------------------------------|
| C)                                      | Sample                            | Size (nm)            | Si %wt                           | Ti %wt       | O %wt                            |
|                                         | a) NF • SiO2 • NP • 1             | $185\pm11$           | $\textbf{9.9}\pm\textbf{0.1}$    | -            | $68.0 \pm 0.2$                   |
|                                         | b) NF • SiO2@TiO2 HT • NP • 1     | $284 \pm 24$         | $8.1\pm0.2$                      | $11.2\pm2.4$ | $29.5\pm0.8$                     |
| mag      HV      Impose det WD      HFW | b)* NF • SiO2@TiO2 CALC • NP • 1  | $211\pm33$           | $0.7\pm0.0$                      | $0.5\pm0.1$  | $\textbf{72.1} \pm \textbf{0.5}$ |
|                                         | c) NF • Bio-SiO2 • NP • 1         | 26 ± 9<br>37.2 ± 6.4 | $\textbf{37.4} \pm \textbf{0.2}$ | -            | $57.6 \pm 0.2$                   |
| b)*                                     | d) NF • Bio-SiO2@TiO2 HT • NP • 1 | 40.8 ± 8.7           | $\textbf{27.8} \pm \textbf{0.3}$ | $11.7\pm0.4$ | $59.4 \pm 0.4$                   |
|                                         |                                   |                      |                                  |              |                                  |





#### TEM



50 nm

50 nm

TiO,

BET

| Sample                            | BET SSA<br>(m²/g) | V micropore<br>(cm <sup>3</sup> /g) | V meso/macropore<br>(cm³/g) | V total<br>(cm³/g) |
|-----------------------------------|-------------------|-------------------------------------|-----------------------------|--------------------|
| a) NF • SiO2 • NP • 1             | 18                | -                                   | 0.04                        | 0.04               |
| b) NF • SiO2@TiO2 HT • NP • 1     | 280               | 0.04                                | 0.14                        | 0.18               |
| b)* NF • SiO2@TiO2 CALC • NP • 1  | 52                | 0.01                                | 0.07                        | 0.08               |
| c) NF ● Bio-SiO2 ● NP ● 1         |                   |                                     |                             |                    |
| d) NF • Bio-SiO2@TiO2 HT • NP • 1 |                   |                                     |                             |                    |





#### XRD



### **Antibacterial Test**

|                        | S. aureus                   |                             | Е. с                        | oli                         |
|------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                        | MIC <sup>1</sup><br>(mg/mL) | MBC <sup>2</sup><br>(mg/mL) | MIC <sup>1</sup><br>(mg/mL) | MBC <sup>2</sup><br>(mg/mL) |
| Bio-SiO2@TiO2 • NP • 1 | 10                          | >10                         | 10                          | >10                         |
| Bio-SiO2@TiO2 • NP • 2 | 10                          | >10                         | >10                         | >10                         |
| SiO2@TiO2 • NP • 1     | 5                           | >10                         | 5                           | >10                         |

<sup>1</sup>minimum inhibitory concentration (growth) <sup>2</sup>minimum bactericidal concentration (bactericidal)







### CS 1.1

- Spray coating at CeNTI: for low amount applied with stand alone unit, later upscale with the pilot plant (not fully yet installed);
- Finalise KDFs for incorporation step

### CS 2

- Spray coating at CeNTI (waiting for the membranes to be sent by B4C)
- Sonochemical coating at BIU

### **CS 6**

- SiO<sub>2</sub>@TiO<sub>2</sub> was sent to start incorporation test, while the optimization of bio-SiO<sub>2</sub>@TiO<sub>2</sub> is ongoing
- RoV observed the presence of dark particulate matter in the material possibly coming from the ultrasonic probe

#### New batch produced – 200 g available

(Ref.<sup>a</sup> <u>NF • SiO<sub>2</sub>@TiO<sub>2</sub> HT • NP • 2</u>) Set-back with pressurized reactor (hydrothermal process) and pilot centrifuge

- TEM, SEM-EDS & antibacterial (BIU), XRD (?) and FTIR (CeNTI)
- Tox and eco-tox evaluation (UNIMB and CNR-IAS: SiO<sub>2</sub>@TiO<sub>2</sub> (+ bio-SiO<sub>2</sub>)



**10L Reator** 

#### **2L Pressurized Reactor**







Bio-SiO<sub>2</sub> – Case studies

NM NEP characterization characterization









# Bio-SiO<sub>2</sub> – Extraction Processes Studied









SEM



- Acid digestion with HNO<sub>3</sub> results in more well-defined and less aggregated particles, suggesting silica with lower porosity and better growth control;
- The sol-gel method generates more porous structures;
- HNO<sub>3</sub> in the sol-gel process appears to lead to a slightly more ordered structure compared to HCl, with less aggregated particles.

Next step: Evaluate by BET and XRD (partner?)





EDS



**XRF & LIBS** 

• Acid digestion with HNO<sub>3</sub> (AD\_HNO3) produces a purer silica, while the sol-gel method, especially with HCl, tends to generate more porous materials with more impurities.









The sol-gel method, particularly when neutralized with different acids, can significantly influence the silica network structure.

- SG\_HCI: Neutralization with HCI may result in more homogeneous particles and a lower density of hydroxyl groups;
- SG\_HNO<sub>3</sub>: HNO<sub>3</sub> can produce denser networks, reflected by more intense bands at 1100–1000 cm<sup>-1</sup> and reduced width at 3600–3200 cm<sup>-1</sup>.





### -OH groups (mmol/g)



FTIR (CNR-SCITEC)

The **sol-gel method**, particularly when **neutralized with different acids**, can significantly influence the silica network structure.

- SG\_HCI: Neutralization with HCI may result in more homogeneous particles and a lower density of hydroxyl groups;
- SG\_HNO<sub>3</sub>: HNO<sub>3</sub> can produce denser networks, reflected by more intense bands at 1100–1000 cm<sup>-1</sup> and reduced width at 3600–3200 cm<sup>-1</sup>.





### LCA & LCC evaluation









Bio-SiO<sub>2</sub> – Case studies

NM NEP characterization characterization









# Bio-SiO<sub>2</sub> – Case studies









**Optimization 1**: Evaluation of bio-SiO2 dispersion in functionalization with TiO2 SEM





BioSiO<sub>2</sub>

BioSiO<sub>2</sub>@TiO<sub>2</sub> – w/out ultrasound

BioSiO<sub>2</sub>@TiO<sub>2</sub> – 1h ultrasound







STEM

# Bio-SiO<sub>2</sub>@TiO<sub>2</sub> – Case studies

**Optimization 1**: Evaluation of bio-SiO2 dispersion in functionalization with TiO2





BioSiO<sub>2</sub>@TiO<sub>2</sub> – w/out ultrasound

 $BioSiO_2@TiO_2 - 1h$  ultrasound







EDS

# Bio-SiO<sub>2</sub>@TiO<sub>2</sub> – Case studies

**Optimization 1**: Evaluation of bio-SiO2 dispersion in functionalization with TiO2



## 00 SiO<sub>2</sub>

TiO<sub>2</sub>

- The Bio-SiO<sub>2</sub> sample exhibits the highest Si concentration, as it consists only biogenic silica;
- After functionalization with TiO<sub>2</sub>, the Si concentration decreases, indicating that TiO<sub>2</sub> is partially coating the silica;
- The functionalization of bio-SiO<sub>2</sub> with TiO<sub>2</sub> was confirmed by the presence of titanium in the treated samples;
- The use of ultrasound for 1 hour did not drastically change the elemental composition.







**FTIR-ATR** 

# Bio-SiO<sub>2</sub>@TiO<sub>2</sub> – Case studies

**Optimization 2: Evaluation of TiO2 shell thickness** 



Α

AA

Α

Bio-SiO2@TiO2-1:2

Bio-SiO2@TiO2 - 1:1

70

80

90

100

Bio-SiO2@TiO2-1:0.5

**XRD** 



Theoretical Experimental<sup>1</sup> TiO2/SiO2 ratio TiO2/SiO2 ratio 0.5 0.3 0.6 1 1.1 2

<sup>1</sup>Evaluated by XRF



50

60

20 (°)





**Optimization 2**: Evaluation of TiO2 shell thickness



### STEM









### **Optimization 3: Evaluation of hydrothermal process conditions**

#### **DoE matrix**

| Sample | KDF1<br>Temperature (°C) | KDF2<br>Pressure (bar) |
|--------|--------------------------|------------------------|
| P1     | 40                       | 7                      |
| P2     | 140                      | 7                      |
| P3     | 140                      | 21                     |
| P4     | 40                       | 21                     |
| Р5     | 90                       | 14                     |
| P6     | 50                       | 18                     |

#### **Characterization:**

- TEM (size and TiO2 shell) BIU
- EDS/XRF (composition) BIU & CeNTI
- BET (porosity and surface area) –
- XRD (crystallinity) CNR-ISSMC
- Antibacterial BIU







Bio-SiO<sub>2</sub> – Case studies

NM NEP characterization characterization









### **Overview of the NMs and NEPs targeted**



\*Rice, Rust & Rice-Rust

- Bio-SiO2-rice husk, Fe-rust waste or both of them were investigated as waste precursors replacing synthetic (organosilica precursors) or iron nitrate commercial reagent – with pH (5) and reducers-to-oxidizers ratio (1.6) fixed.
- Only sample with bio-SiO2 + Fe-nitrate presented antibacterial activity
- Seven samples (six + replica) of the optimum sample (bio-SiO2 + Fe-nitrate) was prepared following a DoE matrix with two KDFs:
- KDF1: pH
- KDF2: reducers-to-oxidizers ratio







# Bio-SiO<sub>2</sub> – Use in case studies





















- Evaluation of the effect of design (1) and re-design (3) on final properties of nanocomposite PU foams and safety production:
  Open mould to mould with lid configuration
  Bio-SiO2@F/Diatomite to Bio-SiO2@F/Gas beton
  - Bio-SiO2@F/Diatomite and open mould (ref<sup>a</sup> material)
  - Bio-SiO2@F/Gas beton and open mould
  - Bio-SiO2@F/Diatomite and mould with lid
  - Bio-SiO2@F/Gas beton and mould with lid







WP2







WP2











### **Conclusions:**

#### Effect of mould type:

• The mould with lid provides greater consistency in density and mechanical properties, indicating better control over the foam formation process.

#### Impact of reinforcement (Diatomite vs. Gas Beton):

• Both reinforcements exhibit similar properties, but gas beton appears to offer higher density and better mechanical properties in some cases.

#### **Property uniformity:**

- Using a mould with lid is more suitable for achieving homogeneous results in terms of density and mechanical strength.
- Small differences in values suggest that **the reinforcing materials (diatomite and gas beton) have minimal influence** on the overall properties under the tested conditions.

#### Thermal conductivity:

• So far, the thermal conductivities are not different according to the N-filler and mould configuration (0.034 W/mk).







# Task 2.4

### **Characterisation and Detection of NMs and NEPs in real-case LC scenarios**

- Task 2.4.1 NMs characterisation in their native form and after environmental interaction.
- Task 2.4.2 Detection of NMs emitted into the environment (synthesis & incorporation).
- Task 2.4.3 Experimental simulation of NMs Emission in environmental compartments with complex matrices (use & EoL).

### Task 2.4.2

### Dedicated field campaigns will be set up to obtain the NMs emissions into the environment by sampling process:

- Airborne NMs detection to monitor emission and occupational exposure.
- Direct-reading instruments: Scanning Mobility Particle Sizer (SMPS); Optical Particle Counter (OPC); Condensation particle Counter (CPC).
- Offline analysis: gravimetric analysis, aerosol collection on filters for SEM observations.
- Simultaneous measurements at near field (NRF) and far field (FRF) positions.







### Task 2.4.2 – Field campaign

Pilot Line: Low Density Casting Machine of CNR-IPCB

#### Processes Analyzed (in Triplicate):

- Bio-SiO2@F/Diatomite & Mould without Lid Configuration (x3)
- Bio-SiO2@F/Gas Beton & Mould without Lid Configuration (x3)
- Bio-SiO2@F/Gas Beton & Mould with Lid Configuration (x3)
- Bio-SiO2@F/Diatomite & Mould with Lid Configuration (x3)

**Total Processes Measured:** 12, plus the background measurements taken during lunch breaks and one night.

#### **Measurement Phases:**

- Weighing Phase
- Loading Phase
- Casting Phase
- Cutting Phase

Focus: Identify whether a process is associated with lower emissions.







NP2



### To be discussed

#### 1. Antibacterial evaluation

- Which partners do they perform antibacterial tests, and which methods are available?
- What methods and strains do we need for each case study/application?









### MULTIDIMENSIONAL INTEGRATED QUANTITATIVE APPROACH TO ASSESS SAFETY AND SUSTAINABILITY OF NANOMATERIALS IN REAL CASE LIFE CYCLE SCENARIOS USING NANOSPECIFIC IMPACT CATEGORIES

# WP2

**Experimental Data Generation: NMs provision and characterisation M-Measure (I)** 

## 12M Annual General Meeting

Turin - Italy 29-30 January 2025

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA No 101138414